Abstract

This research presents a framework to enable computer-automated observation and monitoring of bottlenose dolphins (Tursiops truncatus) in a zoo environment. The resulting approach enables detailed persistent monitoring of the animals that is not possible using manual annotation methods. Fixed overhead cameras were used to opportunistically collect ∼100 hours of observations, recorded over multiple days, including time both during and outside of formal training sessions, to demonstrate the viability of the framework. Animal locations were estimated using convolutional neural network (CNN) object detectors and Kalman filter post-processing. The resulting animal tracks were used to quantify habitat use and animal kinematics. Additionally, Kolmogorov-Smirnov analyses of the swimming kinematics were used in high-level behavioral mode classification. The object detectors achieved a minimum Average Precision of 0.76, and the post-processed results yielded 1.24 × 107 estimated dolphin locations. Animal kinematic diversity was found to be lowest in the morning and peaked immediately before noon. Regions of the zoo habitat displaying the highest activity levels correlated to locations associated with animal care specialists, conspecifics, or enrichment. The work presented here demonstrates that CNN object detection is viable for large-scale marine mammal tracking, and results from the proposed framework will enable future research that will offer new insights into dolphin behavior, biomechanics, and how environmental context affects movement and activity.

Highlights

  • Direct observation of dolphins at accredited facilities and in the wild has been key to developing an understanding of the behavior and biomechanics of these animals

  • The dolphins participated in four formal training sessions according to a regular, well-defined schedule set by the animal care specialists (ACSs)

  • Two individual dolphins were tracked by a human observer and the results were compared to the detections produced by the automated system

Read more

Summary

Introduction

Direct observation of dolphins at accredited facilities and in the wild has been key to developing an understanding of the behavior and biomechanics of these animals. How the dolphins behave in the presence of conspecifics, interact and engage with their environment, or are affected by changes to their environment are all questions of interest.

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.