Abstract

The implementation of object detection algorithms would be helpful to the various fields of the current time. When object detection is applied to the surveillance camera system, it will be more efficient to locate crimes or find lost kids. This paper will investigate the performance of different object detection algorithms in a real-world scenario. With experimentation, CenterNet++ outperforms YOLO and MaskRCNN, two traditional and classic object detection algorithms, on the MS COCO dataset, which concludes that CenterNet++ can ensure both accuracy and speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.