Abstract

Engineering inspection and maintenance technologies play an important role in safety, operation, maintenance and management of buildings. In project construction control, supervision of engineering quality is a difficult task. To address such inspection and maintenance issues, this study presents a computer-vision-guided semi-autonomous robotic system for identification and repair of concrete cracks, and humans can make repair plans for this system. Concrete cracks are characterized through computer vision, and a crack feature database is established. Furthermore, a trajectory generation and coordinate transformation method is designed to determine the robotic execution coordinates. In addition, a knowledge base repair method is examined to make appropriate decisions on repair technology for concrete cracks, and a robotic arm is designed for crack repair. Finally, simulations and experiments are conducted, proving the feasibility of the repair method proposed. The result of this study can potentially improve the performance of on-site automatic concrete crack repair, while addressing such issues as high accident rate, low efficiency, and big loss of skilled workers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call