Abstract
AbstractAccurate travel time estimation is paramount for providing transit users with reliable schedules and dependable real-time information. This work is the first to utilize roadside urban imagery to aid transit agencies and practitioners in improving travel time prediction. We propose and evaluate an end-to-end framework integrating traditional transit data sources with a roadside camera for automated image data acquisition, labeling, and model training to predict transit travel times across a segment of interest. First, we show how the General Transit Feed Specification real-time data can be utilized as an efficient activation mechanism for a roadside camera unit monitoring a segment of interest. Second, automated vehicle location data is utilized to generate ground truth labels for the acquired images based on the observed transit travel time percentiles across the camera-monitored segment during the time of image acquisition. Finally, the generated labeled image dataset is used to train and thoroughly evaluate a Vision Transformer (ViT) model to predict a discrete transit travel time range (band). The results of this exploratory study illustrate that the ViT model is able to learn image features and contents that best help it deduce the expected travel time range with an average validation accuracy ranging between 80 and 85%. We assess the interpretability of the ViT model’s predictions and showcase how this discrete travel time band prediction can subsequently improve continuous transit travel time estimation. The workflow and results presented in this study provide an end-to-end, scalable, automated, and highly efficient approach for integrating traditional transit data sources and roadside imagery to improve the estimation of transit travel duration. This work also demonstrates the added value of incorporating real-time information from computer-vision sources, which are becoming increasingly accessible and can have major implications for improving transit operations and passenger real-time information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.