Abstract

Arranging products in stores according to planograms, optimized product arrangement maps, is an important sales enabler and necessary for keeping up with the highly competitive modern retail market. Key benefits of planograms include increased efficiency, maximized retail store space, increased customer satisfaction, visual appeal, and increased revenue. The planograms are realized into product arrangements by humans, a process that is prone to mistakes. Therefore, for optimal merchandising performance, the planogram compliance of the arrangements needs to be evaluated from time to time. We investigate utilizing a computer vision problem setting—retail product detection—to automate planogram compliance evaluation. Retail product detection comprises product detection and classification. The detected and classified products can be compared to the planogram in order to evaluate compliance. In this paper, we propose a novel retail product detection pipeline combining a Gaussian layer network product proposal generator and domain invariant hierarchical embedding (DIHE) classifier. We utilize the detection pipeline with RANSAC pose estimation for planogram compliance evaluation. As the existing metrics for evaluating the planogram compliance evaluation performance assume unrealistically that the test image matches the planogram, we propose a novel metric, called normalized planogram compliance error (EPC), for benchmarking real-world setups. We evaluate the performance of our method with two datasets: the only open-source dataset with planogram evaluation data, GP-180, and our own dataset collected from a large Nordic retailer. Based on the evaluation, our method provides an improved planogram compliance evaluation pipeline, with accurate product location estimation when using real-life images that include entire shelves, unlike previous research that has only used images with few products. Our analysis also demonstrates that our method requires less processing time than the state-of-the-art compliance evaluation methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call