Abstract

The application of computer vision in conjunction with GPS is essential for autonomous wind turbine inspection, particularly when the drone navigates through a wind farm to detect the turbine of interest. Although drones for such inspections use GPS, our study only focuses on the computer vision aspect of navigation that can be combined with GPS information for better navigation in a wind farm. Here, we employ an affordable, non-GPS-equipped drone within an indoor setting to serve educational needs, enhancing its accessibility. To address navigation without GPS, our solution leverages visual data captured by the drone’s front-facing and bottom-facing cameras. We utilize Hough transform, object detection, and QR codes to control drone positioning and calibration. This approach facilitates accurate navigation in a traveling salesman experiment, where the drone visits each wind turbine and returns to a designated launching point without relying on GPS. To perform experiments and investigate the performance of the proposed computer vision technique, the DJI Tello EDU drone and pedestal fans are used to represent commercial drones and wind turbines, respectively. Our detailed and timely experiments demonstrate the effectiveness of computer vision-based path planning in guiding the drone through a small-scale surrogate wind farm, ensuring energy-efficient paths, collision avoidance, and real-time adaptability. Although our efforts do not replicate the actual scenario of wind turbine inspection using drone technology, they provide valuable educational contributions for those willing to work in this area and educational institutions who are seeking to integrate projects like this into their courses, such as autonomous systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call