Abstract

In this work, a quantitative comparison between experimental swelling data of thermo-sensitive microgels and computer simulation results obtained from a coarse-grained model of polyelectrolyte network and the primitive model of electrolyte is carried out. Polymer-polymer hydrophobic forces are considered in the model through a solvent-mediated interaction potential whose depth increases with temperature. The qualitative agreement between simulation and experiment is very good. In particular, our simulations predict a gradual shrinkage with temperature, which is actually observed for the microgels studied in this survey. In addition, the model can explain the swelling behavior for different contents of ionizable groups without requiring changes in the hydrophobic parameters. Our work also reveals that the abruptness of the shrinkage of charged gels is considerably conditioned by the number of monomeric units per chain. The swelling data are also analyzed with the Flory-Rhener theory, confirming some limitations of this classical formalism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.