Abstract
A three-dimensional finite element method is developed to simulate the surface morphological evolution during the Stranski–Krastanov heteroepitaxial growth. In the formulation, the surface evolves through surface diffusion driven by the gradient of the surface chemical potential, which includes the elastic strain energy, elastic anisotropy and surface energy. Surface condensation rate is assumed to depend on the difference between the surface chemical potential and the chemical potential of the vapor phase. Our simulations reveal that the self-assembly of quantum dots are strongly dependent on the variation of growth rate and elastic anisotropy strength. With appropriate choice of growth rate and elastic anisotropy strength, a relatively more uniform and regular quantum dot array can be obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.