Abstract

We have carried out molecular dynamics simulations using NAMD to study the diffusivity of Na and Cl ions across a POPC lipid bilayer membrane. We show that an imbalance of positively and negatively charged ions on either side of the membrane leads to the diffusion of ions and water molecules. We considered the cases of both weak and very strong charge imbalance across the membrane. The diffusion coefficients of the ions have been determined from the mean square displacements of the particles as a function of time. We find that for strong electrochemical gradients, both the Na and Cl ions diffuse rapidly through pores in the membrane with diffusion coefficients up to ten times larger than in water. Rather surprisingly, we found that although the Na ions are the first to begin the permeation process due to the lower potential barrier that they experience compared to the Cl ions, the latter complete the permeation across the barrier more quickly due to their faster diffusion rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call