Abstract
The dynamics of the two different components of thermodynamically miscible polymer blends can have very different temperature dependences (“thermorheologically complex”) in some cases, while in others the two components behave more in agreement with intuition and have similar temperature dependences. The presence of spatial concentration variations over very local length scales (typically nanometers in size) caused by a combination of thermodynamic factors and chain connectivity effects is one explanation for thermorheological complexity. While several theories have been presented to rationalize this rich variety of rheological behavior, there remain lingering questions of the relative importance of system thermodynamics and chain connectivity effects in determining concentration variations over such small spatial domains. We critically investigate these issues using lattice Monte Carlo simulations on model binary blends. Our simulations show that the distribution of concentrations encountered within a specified control volume is indeed Gaussian with widths that are in excellent agreement with the predictions of mean-field theory. However, these distributions are centered at compositions that are significantly enriched due to chain connectivity effects. These results provide an excellent basis for the development of microscopic theories for the dynamics of polymer blends.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.