Abstract

Using computer simulations and a quantitative method for describing bifurcating structures, the morphology of branching patterns seen in early land plants is analyzed. Four types or models of random branching (regular, geometric, binomial, and poisson) are shown to adequately describe the range of observed branching in most early land plants. Approximately 57% of all randomly generated computer patterns show reiterative branching events (=three successive identical modes of branching). Artificial canalization of reiterative events results in branching patterns structurally analogous with that of ancient fossil plants. Simulated phylogenetic changes among early land plant lineages, based on parsimonious transitions in branching patterns, indicate that most observed trends can be related directly to those seen in randomly generating branching patterns in which “size” is increased. The trimerophyte to progymnosperm trend in changing branching patterns is an exception, since the binomial model describing the progymnosperms has not been simulated by random processes.While the apparent phylogenetic changes among early land plant groups do not require deterministic explanations, the transition from regular to geometric branching and the “canalization” of reiterative branching patterns may represent a grade level response to selective pressures related to mechanical design and vegetative reproduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.