Abstract

We study the propagation of single, neutrally buoyant rigid spheres under pressure-driven flow by means of extensive computer simulations that correctly account for hydrodynamic interactions. We first consider a system geometry consisting of two parallel plane walls and achieve very good agreement with experimental results [M. E. Staben and R. H. Davis, Int. J. Multiphase Flow, 2005, 31, 529]. In the second part of our analysis, we simulate the flow of tracer particles through a hexagonal array of cylindrical obstacles, whose axis lies parallel to the gradient–vorticity plane of the flow. We find that the presence of the obstacles causes a significant slowdown of the tracer particles and that their velocities respond in a highly non-linear way to an increasing pressure drop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.