Abstract
Computer simulations of the Rayleigh and Raman spectral time-correlation functions (TCFs) are reported for N2 at 323 K and densities ranging from 0.48 to 2.5 times the critical value. The results are compared with experiment. Particular attention is paid to the density dependence of the spectral intensity due to the correlated permanent polarizability and to the interaction-induced contributions to the polarizability. The partial cancellations that occur between various two-, three-, and four-body terms in the cross and collision induced (CI) parts of the spectral TCFs are evaluated. It is shown that these terms are significant in both the Raman and the Rayleigh spectra, but cancellation greatly reduces their net contribution at all densities studied. The weak but uncancelled TCFs that are associated with orientational correlations of the molecular polarizability anisotropies are shown to be a significant part of the high density Rayleigh TCFs. It is argued that the long-range nature of this TCF means that its simulated values are poorly known.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.