Abstract
The mobility of simple ions such as alkali–metal and halide ions at room temperature shows two anomalies. Firstly, there are maxima in mobilities as a function of ion size for both positive and negative ions and, secondly, the maximum for negative ions occurs at a larger ionic radius than the maximum for positive ions. Theoretical treatments of this problem are reviewed and it is concluded that a molecular treatment of the system is needed to understand the results. Computer simulation using the simple point charge model (SPC/E) for water reproduced the observations and is used to discuss the application of theories. In particular, the nature of the first solvation shell is correlated with ion mobility. Simulation reveals a further anomaly, namely that if the charge is removed from a large ion, then it moves more slowly. This is interpreted as the result of formation of a solvent cage around the hydrophobic solute. The changes in local structure resulting from changes in charge and size also affect the solvation thermodynamics. Simulations show that the solvation entropy has a double maximum when viewed as a function of charge. The local minimum near zero charge is interpreted as being due to hydrophobic order, and the maxima as the result of structure breaking. This double maximum in the entropy of solvation is a signature of the hydrophobic cage effect. Comparisons are made between ion mobilities in liquid water at ambient and supercritical conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.