Abstract

Wetting properties of simple gases on alkali metal surfaces are of fundamental importance because they manifest the least attractive gas-surface interactions in nature and because their critical behavior is described by the two-dimensional Ising model. We report simulation results for the adsorption of neon and hydrogen on alkali metal surfaces. These use the grand canonical (classical) Monte Carlo and (quantum) path integral Monte Carlo methods, respectively. We find a set of wetting transitions at temperatures which are very sensitive to the adsorption potentials. Comparison is made with recent experiments and with predictions of a model of Cheng, et al. in which the transition temperature is estimated from a simple cost-benefit analysis involving the surface tension and the adsorption potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.