Abstract

The time correlation functions associated with the Onsager phenomenological coefficients for isothermal matter transport have been calculated by Monte Carlo simulation for a binary system (A,B) at the equiatomic composition according to the Kikuchi-Sato model of an order-disorder alloy with vacancy transport mechanism. The diagonal (AA) time correlation functions are positive, decay monotonically to zero, and exhibit a long time tail where they vary as t-n where t is time; the exponent n varies weakly with temperature at high temperatures and more rapidly as the temperature is lowered through the order-disorder transition temperature. In the region of short-range order the off-diagonal (AB) time correlation function is negative but otherwise shows similar behaviour to the diagonal one, although as the transition temperature is approached n varies more rapidly. At the transition temperature and below, the off-diagonal time correlation function increases from an initial negative value to a maximum where it is positive and then, at later times, decreases to zero. The implications of these observations for approximate theoretical calculations of the phenomenological coefficients are briefly indicated.Key words: diffusion, non-equilibrium phenomena, statistical mechanics, transport properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.