Abstract

The efficiency of the operation of a porous electrode with an immobilized enzyme is defined, in particular, by a lucky structure of its active layer, which can contain nanosized particles of the support. The composites of such a kind are prepared with the aid of methods of colloidal chemistry. The aim of this particular investigation is to perform a computer simulation of processes of coagulation of particles of the support and their possible heterocoagulation with molecules of the enzyme. Algorithms of the formation of nanocomposite structures in solution are suggested. Calculations show that the concentration of the enzyme molecules in the nanocomposite structures cannot exceed a certain critical value. On the other hand, at a fixed value of the concentration of the enzyme molecules, the concentration of the support particles must not fall below a certain threshold quantity, which provides for the passing of current through the active layer. In order for all the enzyme molecules, rather than for a fraction of these, in the composite to take part in the process of bioelectrocatalysis, the concentration of support particles must be increased even higher, to an optimum value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call