Abstract

Based on the applied theory of shells, an energy-consistent resolving system of equations is constructed, and a complex numerical method is developed which, within the framework of an explicit variational-difference scheme, makes it possible to solve both quasi-static and dynamic problems of nonlinear nonaxisymmetric deformation and loss of stability of composite cylindrical shells. The reliability of the developed method is substantiated by comparing calculation results with experimental data. The characteristic forms and critical buckling loads of GRP cylindrical shells as functions of the level of preloading by a quasi-static internal pressure and of the subsequent dynamic loading by an external pressure are analyzed for various reinforcement patterns in a wide range of loading rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call