Abstract
The bulk thermodynamic properties of membrane proteins originate from a complex combination of molecular interactions. We propose a simple model based on the pair interactions between a model membrane protein, annexin V. The experimental observations of a honeycomb (p6) and a triangular (p3) phase are successfully reproduced with Monte Carlo computer simulations. Grand canonical simulations and a newly developed “strip”-move constant pressure technique reveal the stability of a dilute fluid phase and a dense solid phase, not observed with the current experimental technology. While this model is extremely simple in that it relies only on hard-body and short-range directional interactions, it nevertheless captures the essential physics of the interactions between the protein molecules and reproduces the phase behavior observed in experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.