Abstract

Ab initio calculations of the electronic structures of binary ZnO- and TiO2-based oxides are performed to search for optimum dopants for efficient absorption of the visible part of solar radiation. Light elements B, C, and N are chosen for anion substitution. Cation substitution is simulated by 3d elements (Cr, Mn, Fe, Co) and heavy metals (Sn, Sb, Pb, Bi). The electronic structures are calculated by the full-potential linearized augmented plane wave method using the modified Becke-Johnson exchange-correlation potential. Doping is simulated by calculating supercells Zn15D1O16, Zn16O15D1, Ti15D1O32, and Ti8O15D1, where one-sixteenth of the metal (Ti, Zn) or oxygen atoms is replaced by dopant atoms. Carbon and antimony are found to be most effective dopants for ZnO: they form an energy gap ΔE = 1.78 and 1.67 eV, respectively. For TiO2, nitrogen is the most effective dopant (ΔE = 1.76 eV).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.