Abstract

Computer simulation of protein materials and their dynamic or mechanical behavior is of high significance, as proteins perform their functions through their structural changes in response to a force (or stimulus). The computer simulation enables the detailed insight into the structure and behavior of proteins at atomistic resolution, which is inaccessible with experimental toolkits such as single-molecule experiments. With the advancement of computing resources, the computer simulation has recently played a vital role as a virtual microscopy in understanding and characterizing the structure and behaviors of protein materials at atomistic resolution. For examples, computer simulations allow for gaining insight into how some protein domains can exhibit the remarkable mechanical properties and functions. In this article, we would like to address the current state-of-arts of computer simulations that have been employed for studying the structure and properties (or behaviors) of proteins at multiple length scales ranging from single proteins to protein assemblies. Specifically, we summarize various computational modeling techniques, ranging from atomistic models to coarse-grained models and continuum models, applicable for modeling protein structures at multiple length scales from single proteins to protein assemblies. This paper discusses how such various computational modeling/simulation techniques can be employed for studying the structure and properties of protein materials at multiple length scales. This paper sheds light on computer simulations, which are able to unveil the hidden, complex mechanisms related to the structure and properties of protein materials at multiple length scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.