Abstract

Surface micro cracks are easy to produce in the preparation and service process of metal material, which impacts on the safe operation of metal components. Pulsed laser spot excitation and infrared thermal imaging technology are combined to detect metal surface micro-cracks. The working principle of laser infrared thermal imaging detection technology was described. The three dimensional heat conduction model of pulsed laser excitation flux transfer in metal plate was established, and calculated using finite element method (FEM). The results showed that, thermal flow in the image is a D shape. There are temperature differences between the sound regions and defective regions, and the defects experiences the process of obscure, gradually clear, and gradually obscure. Pulsed infrared thermography sequence was processed by polynomial fitting method, and the coefficient images effectively improve the contrast between defective and non-defective areas, which is beneficial to the determination and of recognition micro cracks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.