Abstract

A realistic metabolic model of the tricarboxylic acid cycle in the perfused rat heart was constructed to help explain the sequence of biochemical events regulating the metabolism of exogenous pyruvate following a large increase in work load. The unchelated Mg2+ level was the most important controlling factor. The resulting mixture of chelated and unchelated nucleotides and tribasic acids effected coordinated control of citrate synthase, aconitase, isocitrate dehydrogenase, succinyl CoA synthetase, fumarase, and nucleoside diphosphokinase, because Mg2+-chelates are generally substrates whereas unchelated species are inhibitors. Succinate dehydrogenase is largely controlled by the ubiquinone redox potential. The fluxes through alpha-ketoglutarate and malate dehydrogenases are largely dependent on thepyridine nucleotide redox potential, but the succinyl CoA-to-CoASH ratio strongly affects the former enzyme as well. The model predicts an accumulation of succinate during the transition to higher work output.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call