Abstract

The translational and rotational diffusion coefficients and the intrinsic viscosity of semiflexible, randomly broken, and wormlike chains have been obtained by Monte Carlo simulation in the context of the rigid-body treatment. Both approximate and rigorous rigid-body hydrodynamics are used, so that the error introduced by the approximate methods can be evaluated. A randomly broken chain and a wormlike chain having the same contour length and persistence length have the same radius of gyration but different values for any of the hydrodynamic properties. The two types of chains are compared in this regard. Considering that the cross section of the chain is represented by a cylinder better than by a string of spheres, we devise a cylindrical correction to be applied to the results simulated for chains of beads. Application is made to the analysis of experimental data for the translational and rotational coefficients of DNA fragments with up to 10(3) base pairs, obtaining the persistence length for each model. The values for the wormlike chain agree well with model-independent values obtained from radii of gyration and with other literature data at varying ionic strength. The randomly broken chain is equally able to reproduce the experimental length dependence of the properties, but the resulting persistence length may be too high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call