Abstract

This article deals with the theoretical issues of the formation of a melt pool during the process of direct laser deposition. The shape and size of the pool depends on many parameters, such as the speed and power of the process, the optical and physical properties of the material, and the powder consumption. On the other hand, the influence of the physical processes occurring in the material on one another is significant: for instance, the heating of the powder and the substrate by laser radiation, or the formation of the free surface of the melt, taking into account the Marangoni effect. This paper proposes a model for determining the size of the melt bath, developed in a one-dimensional approximation of the boundary layer flow. The dimensions and profile of the surface and bottom of the melt pool are obtained by solving the problem of convective heat transfer. The influence of the residual temperature from the previous track, as well as the heat from the heated powder of the gas–powder jet, taking into account its spatial distribution, is considered. The simulation of the size and shape of the melt pool, as well as its free surface profile for different alloys, is performed with 316 L steel, Inconel 718 nickel alloy, and VT6 titanium alloy

Highlights

  • The direct laser deposition (DLD) process, according to the classification considered in [1], is currently becoming a more and more promising technology for the additive production of parts for various purposes in shipbuilding, aircraft construction, mechanical engineering, and other industries

  • There is already a positive experience in the manufacture of ship fittings, propellers [2,3], water jet propellers [4,5], large-sized products and machine parts [6], high-pressure vessels, and others. This technology belongs to the direct metal deposition (DMD) technologies, in which the product is formed from a metal powder supplied by a gas jet directly into the area of action of focused laser radiation

  • The influence of the Marangoni effect, capillary forces, and the mutual influence of hydrodynamics and heat transfer in the melt pool are rarely taken into account

Read more

Summary

Introduction

The direct laser deposition (DLD) process, according to the classification considered in [1], is currently becoming a more and more promising technology for the additive production of parts for various purposes in shipbuilding, aircraft construction, mechanical engineering, and other industries. There is already a positive experience in the manufacture of ship fittings, propellers [2,3], water jet propellers [4,5], large-sized products and machine parts [6], high-pressure vessels, and others This technology belongs to the direct metal deposition (DMD) technologies, in which the product is formed from a metal powder supplied by a gas jet directly into the area of action of focused laser radiation. The presented work is a development of the model developed earlier in [6,7,14,15]; it was developed for modeling the process of forming thin-walled structures This model takes into account the Marangoni effect, the transfer of the powder by a gas jet, the heating of the powder by laser radiation, the interaction of the jet with the substrate, and heat transfer in the solid and liquid phases, as well as the hydrodynamics of the melt pool. This work presents the results of theoretical studies and modeling of joint thermal and hydrodynamic processes in the stationary case for the DLD process, taking into account the influence of the heated powder on the melt pool

Melt Flow Description
Influence of the Powder Jet on the Heat Transfer in the Deposited Wall
Results and Discussion
Temperature
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call