Abstract

Temporal evolution and morphology of grain structure in three dimensions were simulated by the phase field and the Monte Carlo simulations. In order to prevent impingement of grain of like orientation, a new algorithm was adopted for both simulations. Excluding the initial stage, the average area is found to be proportional to time in the phase field and the Monte Carlo simulations. The scaled grain size and the face number distributions become time-independent in both simulations. The scaled grain size and the face number distributions obtained by the phase field simulation are in good agreement with those by the Monte Carlo method. The nearest neighbor face correlation similar to the Aboav– Weaire relation is observed in simulated grain structures by both methods. The nearest neighbor face correlation for the phase field model is quite similar to that for the Monte Carlo method. The Allen–Cahn type equation for the phase field simulation can be derived from the master equation of the Monte Carlo Model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.