Abstract
The high-silicon aluminum alloy by spray deposition forming is well suited for the engine cylinder liner because of the need of high strength and abrasion resistance, but its forming process is much complex, and many process parameters are involved. In order to lower the investments of time, labor power and money due to the traditional processing methods that need to adjust the craft parameters frequently, the thermal extrusion process and the spinning process that are the most important forming processes in aluminum alloy cylinder liner forming are simulated by the finite element simulation technology. It is found that during the extrusion process, the equivalent stresses near the die are larger, and uneven, the stress gradient is very large, but the maximum stress does not exceed the allowable stress of the material through the numerical simulation; In the spinning process, the stress and deformation are larger at the beginning of the process, but they will have a slight decreasing with the spinning process going on. Throughout the spinning process, the equivalent stress and strain distribution of the spinning component maintained a relatively balanced state basically, which is consistent with the later experimental results. It proves the reliability of the the simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.