Abstract
This paper deals with the problem on determination of resistance forces impeding a drill string dragging in a deep curvilinear bore-hole channel. The bore-hole axis geometry is considered to be prescribed discretely at its separate points with the use of the results of geophysical measurements (bore-hole navigation). A “3D stiff-string differential model” for simulation of the drag/torque phenomena accompanying hoisting, lowering and drilling operations is proposed. The system of ordinary differential equations is derived based on the theory of curvilinear flexible elastic rods. The transfer from the tabular to analytic description of the bore-hole trajectory geometry is performed with the application of the cubic spline interpolation. The elaborated approach can be used for simulation of the drill string dragging with rotation, its contact and frictional interaction with the bore-hole surface and prognostication of the string lock up situations. Numerical examples are presented to illustrate the proposed techniques advantages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.