Abstract

The dissipative particle dynamics (DPD) simulation method is applied to study the mesoscopic phase formation of cyclic diblock copolymer c-AmBn (m + n = 20). The phase diagram is constructed by simulating at different interaction parameters and composition fractions. The resulted phase diagram is similar to that of the linear diblock copolymer; i.e., the ordered structures such as lamellae, perforated lamellae, hexagonal cylinders, and body-centered-cubic spheres can be identified in the parameter space. Melted structures such as micelle-like, liquid rod, and random network phases have also been found in the phase diagram. The observed (χN)ODT is in agreement with the theoretical prediction, if a finite chain length mapping is applied. Cyclization of a linear block copolymer can induce remarkable changes in the morphology of the organized meso structure. This is attributed to the reduced chain length of the cyclic block copolymer. The existence of the melted structures between totally disordered and the o...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.