Abstract

Discontinuous molecular dynamics simulation is used to study the phase behavior of diblock copolymers modeled as chains of tangent hard spheres with square shoulder repulsions between unlike species as a function of chain length, volume fraction and interaction strength (χ). The location of the order–disorder transition for a symmetric copolymer is close to the predictions of Fredrickson and Helfand. Our simulation results for packing fractions of 0.35, 0.40, and 0.45 and chain lengths 10 and 20 are summarized in phase diagrams which display disordered, lamellae, perforated lamellae (PL), cylindrical, and BCC spherical (S) phases in the χN versus f plane. These phase diagrams are consistent with phase diagrams from other simulation studies. Contrary to theoretical predictions we observe the PL phase near regions of predicted gyroid stability, and the S phase only in the systems with high packing fraction and long chain length. These discrepancies may be due to the short chain lengths considered, as they are less evident in the 20-bead chains than the 10-bead chains. We examine the structural spacing of the microphases and the variation of that spacing with χN. We also examine the internal energy and entropy and their variation with χN. Our results are consistent with self-consistent field theory results for the strong segregation limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.