Abstract

The article describes an approach to ensuring stability and controllability of unmanned aerial vehicle (UAV) with unknown aerodynamic characteristics by computer simulation of the airplane flight along a given route in the meteorological standard atmosphere. This computer model takes into account the programmed flight of an unmanned aerial vehicle in the meteorological atmosphere along a given route with waypoints. For this purpose the model incorporates 5 feedback systems (FS) with autopilot (AP) that ensure the stability and controllability of an airplane. Besides the autopilot and the airplane glider the control system encompasses the Kalman filter and a strapdown inertial navigation system. The appropriate structure and parameters of the control system of the model were chosen on the basis of practical technical solutions of the de veloped UAVs. The closed control systems of the model are developed according to the equations considering generation of aerodynamic forces and moments, a model of the standard atmosphere, the routing scheme and the feedback system with autopilot. The stability and controllability of the model were analyzed according to the theory of feedback systems with the graphic plotting of Bode magnitude plot and Bode phase plot. With a view to the assessment of dynamic and fluctuation errors of the control systems the model is represented by stochastic differential control system with the Kalman filter and the strapdown inertial navigation system in quaternions. The results of the computer simulation showed that the Kalman filter estimates the measured parameters with the noise reduction under 10 dB. The strapdown inertial navigation system influences the general dynamics of the control system during the assessment of its stability and controllability. Changing the band of the control system at the expense of external perturbations affecting the plane can lead to instability, and in order to avoid it the robust autopilot is recommended.

Highlights

  • The article describes an approach to ensuring stability and controllability of unmanned aerial vehicle (UAV) with unknown aerodynamic characteristics by computer simulation of the airplane flight along a given route in the meteo­ rological standard atmosphere

  • The appropriate structure and parameters of the control system of the model were chosen on the basis of practical technical solutions of the de­veloped UAVs

  • The closed control systems of the model are developed according to the equations considering generation of aerodynamic forces and moments, a model of the standard atmosphere, the routing scheme and the feedback system with autopilot

Read more

Summary

ДЛЯ ОБЕСПЕЧЕНИЯ УСТОЙЧИВОСТИ И УПРАВЛЯЕМОСТИ

Рассмотрен подход к решению проблемы устойчивости и управляемости беспилотного летательного аппарата (БЛА) с неизвестными аэродинамическими характеристиками путем компьютерного моделирования полета БЛА по заданному маршруту в реальной стандартной атмосфере. Для этого в модель введены пять систем автоматического управления с автопилотом, которые обеспечивают устойчивость и управляемость полета БЛА. В состав систем управления кроме автопилота и планера БЛА включены фильтр Калмана и бесплатформенная инерциальная навигационная система. Анализ устойчивости и управляемости такой модели проводился на основе теории систем автоматического управления с графическим построением логарифмической амплитудно-частотной характеристики (ЛАХ) и фазово-частотной характеристики (ФЧХ). Бесплатформенная инерциальная навигационная система влияет на общую динамику системы управления при ее оценке устойчивости и управляемости. Изменение полосы системы управления за счет внешних возмущений на БЛА может привести к потере устойчивости, для сохранения которой желательно использовать робастный автопилот. Ключевые слова: устойчивость и управляемость БЛА, фильтр Калмана, бесплатформенная инерционная навигационная система, САУ АП, ошибки управления БЛА. Scientific and Production Centre of Multifunctional Unmanned Systems of the National Academy of Sciences of Belarus, Minsk, Belarus

Ka Tэ
БЛА вокруг оси
Список использованных источников
Information about the authors
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call