Abstract

This study describes computer simulations of carbonization and graphite formation, including the effects of hydrogen, nitrogen, oxygen, and sulfur. We introduce a novel technique to simulate carbonization, ‘Simulation of Thermal Emission of Atoms and Molecules (STEAM)’, designed to elucidate volatile outgassing and density variations in the intermediate material during carbonization. The investigation analyzes the functional groups that endure through high-temperature carbonization and examines the graphitization processes in carbon-rich materials containing non-carbon impurity elements. The physical, vibrational, and electronic attributes of impure amorphous graphite are analyzed, and the impact of nitrogen on electronic conduction is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.