Abstract

Several double-walled carbon nanotubes (DWCNTs) composed of different internal and external carbon nanotubes (CNTs) are presented and simulated by the molecular dynamics (MD) method. Interlayer distances of these novel DWCNTs are different with those of normal DWCNTs, i.e. 0.34nm. Their initial equilibrium configurations and buckling behaviors under axial compression are simulated to examine the influence of the van der Waals force on the mechanical properties of DWCNTs. The interaction of atoms in each tube is described by the Tersoff–Brenner potential, while the van der Waals force between inner and outer walls is described by the Lennard–Jones potential. Numerical results show that the different van der Waals force coming from different interlayer spacing results in different critical buckling strain of DWCNTs under axial compression. These new DWCNTs exhibit better compressive stability as compared with the normal DWCNT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.