Abstract
The flocculation of colloidal particles by adsorbing polymers is one of the central issues of colloid science and a very important topic in many industrial, biological, and environmental processes. We report a computer simulation study of a 2- and 3-dimensional model for bridging flocculation betweenlarge linear polymer chains and comparatively small colloidal particles,where the structure and growth kinetics of cluster formation are investigated. This model was developed within the framework of the cluster–cluster aggregation model using mass and fractal dimension dependent diffusion constants, where bridging flocculation is seen as a case of heterocoagulation in which, in addition, macromolecule configurations and lengths play an important role. The simulation of aggregate structure and formation kinetics obtained at different (i) relative particle concentrations, (ii) polymer chain conformations, and (iii) sticking probabilities are described from a qualitatively and quantitative point of view. The results suggest that the formation of large aggregates is a slow process, controlled by the reactivity of the clusters, even when the reaction between microcolloids and macrochains is very fast. Aggregation kinetics are strongly dependent on the particle/chain concentration ratio and on the configurational properties of the chains. It is shown that the scaling laws which are valid for homocoagulation processes are also applicable to the kinetics of bridging flocculation. The corresponding scaling exponents have been calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.