Abstract

A comprehensive computer model was developed for simulation of the population dynamics of the cattle ticks, Boophilus microplus (Canestrini) and B. annulatus (Say). The model is deterministic and based on a dynamic life table with weekly time steps. The model simulates the effects of major environmental variables, such as ambient temperature, saturation deficit, precipitation, type of pasture, type of cattle, and cattle density on Boophilus cattle tick population dynamics. General validity of the model is established by comparing simulated and observed yearly densities of standard female ticks/host/day. B. microplus population comparisons were made for a series of years using weekly weather data from two locations in Queensland, Australia. The model also produced acceptable values for initial population growth rate, generation time, and 3-yr population density when historical weather at 7 locations in Australia and 23 locations in the Americas were used. This model provides a framework for the study of Babesia transmission by Boophilus ticks, and can be used to study the effects of control technologies and to develop more efficient and environmentally acceptable eradication strategies for Boophilus ticks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.