Abstract

The haploid–diploid cycle where, under unfavorable conditions the population becomes diploid, is modeled by a Monte-Carlo method in the framework of the Jan–Stauffer–Moseley hypothesis. Diploidy and sex may have first arisen as a way to escape death, when a simple unicellular individual is threatened by too many deleterious mutations. Using a bit string model, we find that in a system where competition is present (through the Verhulst factor), diploids dominate. In this case the transition from haploid to essentially diploid population takes place in a short time interval reminiscent of phase transitions in physical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.