Abstract

An EGSnrc user code is developed to simulate a backscattered geometry in vivo x-ray fluorescence system for the measurement of platinum concentration in head and neck tumours. The user code is fundamentally based on a previous study which used the EGS4 Monte Carlo code. The new user code, which we have developed in this study, has new improvements which made it able to simulate the process of photon transportation through the different components of the modelled x-ray fluorescence system. The simulation process included modelling of the photon source, collimators, phantoms and detector. Simulation results were compared and evaluated against x-ray fluorescence data obtained experimentally from an existing system developed by the Swansea In vivo Analysis and Cancer Research Group. In addition, simulation results of this study were also compared with our previous study in which the EGS4 user code was used. Comparison between results has shown that the new EGSnrc user code was able to reproduce the spectral shape obtained using the experimental x-ray fluorescence system. The area under the Compton peak differs by 2.5% between the experimental measurement and the EGSnrc simulation. Similarly, the area under the two Pt Kα peaks differs by 2.3% and 2.2%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.