Abstract
Fractals are a class of highly irregular shapes that have myriad counterparts in the real world, such as islands, river networks, turbulence, and snowflakes. Classic fractals include Brownian paths, Cantor sets, and plane-filling curves. Nearly all fractal sets are of fractional dimension and all are nowhere differentiable.Previously published procedures for calculating fractal curves employ shear displacement processes, modified Markov processes, and inverse Fourier transforms. They are either very expensive or very complex and do not easily generalize to surfaces. This paper presents a family of simple methods for generating and displaying a wide class of fractal curves and surfaces. In so doing, it introduces the concept of statistical subdivision in which a geometric entity is split into smaller entities while preserving certain statistical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.