Abstract

The operation of a high-voltage solar array in low Earth orbit may cause arcing on the negatively biased parts of a solar array. This sets a practical limit on the operational voltage of solar arrays.This paper is the extension of three earlier works regarding high-voltage solar array arcing. The onset of arcing is reproduced by self-consistent computer simulations to verify the arcing onset model developed in the earlier work. It is shown that neutral gas is desorbed from the dielectric surface forming a localized neutral cloud over the surface, and the arcing onset occurs as the gas breakdown at a parameter pd (pressure times distance) much smaller than the Paschen minimum. Analytical expressions for the prebreakdown electron currents and the neutral densities are also derived and used to obtain a parametric formula of the breakdown condition. Arcing rates are calculated including the breakdown condition of the desorbed neutral gas. The theory is compared to the Japanese Space Flyer Unit High-Voltage Solar Array ground experiment and shown to give a reasonable explanation for data relating the arcing rate to the solar array temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.