Abstract

Electrochemotherapy (ECT) requires covering the entire tumor and safe margins with a suitable pulsed electric field (PEF). The PEF distribution depends on the biological and electrical parameters. The biological tissue may have diffractive geometry with non-linear conductivity behavior due to electroporation. That characteristic may provoke ECT-insufficient electric field regions, also known as blind spots. The conductive gels can fill holes and bumps, being a tool to homogenize the electric field. We executed an in vitro vegetal tissue experiment to validate a numerical model under different gels conditions. We used a study case in silico experiment to investigate gel influence on PEF distribution and electrical current. We propose a case-oriented methodology to optimize the gel during the ECT pre-treatment. Results show that the optimized gel completely treats a region of interest while avoiding unnecessary current increase and damage to healthy tissue by over treatment. The optimized gel conductivity may be lower than the previously reported (0.5 to 1 S/m) and may be in the range of the commercially available gels. For a veterinary mastocytoma exophytic nodule ECT case study, using needles electrode, the 0.2 S/m gel is the optimum gel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.