Abstract

Computer simulations are used to investigate the basic three-dimensional structure of the fast reconnection mechanism spontaneously developing from a long current sheet. It is shown that if three-dimensional effects (∂sol;∂z ≠ 0) are not so strong, a locally enhanced resistivity results in current-sheet thinning, and a fast reconnection process, involving switch-off shocks, is eventually set up in a region limited in the z direction. The fast reconnection process near the z = 0 plane becomes quasi-steady and two-dimensional (∂/∂z = 0), so that the well-known Petschek mechanism is fully applicable. Distinct plasma rarefaction occurs inside the fast reconnection region, so that fast-mode expansion may propagate in the z direction, and the resulting inflow velocity uz takes the magnetic field into the fast reconnection region and contracts the latter. The global current system undergoes drastic changes during the fast-reconnection development. The current flow, initially directed in the z direction, first converges towards the neutral line, and is then largely deflected away from this line in the inner reconnection region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.