Abstract

Abstract The cellulose Lyocell fibre spinning process can be divided into two processes, a dry spinning process in the air gap, and a wet spinning process in the coagulation bath. In order to simulate the process in the air gap, the heat capacity Cp, the density ρ, and the elongational viscosity η were measured by experiments carried out as a function of temperature and concentration of cellulose. The calculated diameters and temperature profiles along the spinning path were compared with the experimental results. The concentration of N-methyl-morpholine-N-oxide (NMMO) in the fibre (in the coagulation bath) was also measured during the experiments, and the diffusion coefficient was then calculated. Using the data obtained, the time during which the NMMO content in the fibre reaches the equilibrium state in the coagulation bath can be predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.