Abstract

This work is a continuation of our recently published study (Rao and Faghri (1988). Aerosol Sci. Technol. 8:133–156) in which an in-line array of parallel circular cylinders, placed transverse to the flow, was proposed as a model for fibrous filters. In the previous study, the pressure drop and particle collection efficiency due to the mechanisms of interception and Brownian diffusion were theoretically predicted. In this work particle collection due to interception, inertia effects, and electrostatic forces is considered. As in the previous study, the flow within the in-line array is obtained by solving the full Navier-Stokes equations with the assumption of fully developed flow. A control volume differencing scheme is used for this purpose. The enhancement in particle collection is considered for the case when an electric field is applied across the filter. The increase in collection efficiency due to electrostatic effects is modeled using the method of images. Here, the electric field around a fiber is...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call