Abstract

A global iterative coding method for computer-generated holograms (CGH) is introduced. The method is based on the iterative correction of a CGH using standard Lee coding. The correction, i.e., the difference between the desired and the obtained reconstruction, is coded and added to the current CGH. The coding and weighting factors are introduced to control the speed of convergence and the SNR. Advantages lie in low computing time and improvement of the object SNR, the neighborhood SNR, and the background SNR. Reducing the standard deviation of the phase of the reconstructed object also results. A slight improvement of the diffraction efficiency is also observed. The comparison is realized using the Lee interferogram method as a reference. This method is tested on binary and complex gray-level objects. Simulation results and optical reconstruction are also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call