Abstract

11566 Background: Immune-checkpoint blockade treatments, particularly drugs targeting the programmed death-1 (PD-1) receptor, demonstrate promising clinical efficacy in patients with non-small cell lung cancer (NSCLC). We sought to evaluate whether computer extracted measurements of tortuosity of vessels in lung nodules on baseline CT scans in NSCLC patients(pts) treated with a PD-1 inhibitor, nivolumab could distinguish responders and non-responders. Methods: A total of 61 NSCLC pts who underwent treatment with nivolumab were included in this study. Pts who did not receive nivolumab after 2 cycles due to lack of response or progression per RECIST were classified as ‘non-responders’, patients who had radiological response per RECIST or had clinical benefit (defined as stable disease >10 cycles) were classified as ‘responders’. A total of 35 quantitative tortuosity features of the vessels associated with lung nodule were investigated. In the training cohort (N=33), the features were ranked in their ability to identify responders to nivolumab using a support vector machine (SVM) classifier. The three most informative features were then used for training the SVM, which was then validated on a cohort of N=28 pts. Results: The maximum curvature ( f1), standard deviation of the torsion ( f2) and mean curvature ( f3) were identified as the most discriminating features. The area under Receiver operating characteristic (ROC) curve (AUC) of the SVM was 0.84 for the training and 0.72 for the validation cohort. Conclusions: Vessel tortuosity features were able to distinguish responders from non-responders for patients with NSCLC treated with nivolumab. Large scale multi-site validation will need to be done to establish vessel tortuosity as a predictive biomarker for immunotherapy. [Table: see text]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.