Abstract

A method for evaluating the water application rate (WAR) and uniformity coefficient (Cu) of overlapping irrigation sprinklers is given for realistic field conditions which includes wind drift of the sprinkler spray. The method requires as input — the geometry of the sprinkler arrangement, trajectories of water drops from the sprinkler nozzle as calculated by the equations of motion and the WAR distribution (discharge) profile of a single sprinkler experimentally observed under windless conditions. Wind direction with respect to the main sprinkler line is shown to have a small effect on Cu and is assumed to be parallel to the main line. Results show that the effect of wind drift of sprinkler spray on Cu can be neglected for wind velocities less than 1 ms−1 (Fig. 8). Analysis of simulated discharge profiles (Table 1) shows that the maximum value of the uniformity coefficient was obtained with triangular sprinkler discharge profiles at low values of spacing, changing to trapezoidal profiles as the spacing increases (Figs. 8 and 9). The effect of nozzle pressure on WAR was evaluated for the pressure range between 294 and 490 kPa and an optimum layout of overlapping sprinklers, designed to minimize the effect of wind drift and nozzle pressure on the uniformity of WAR distribution, is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.