Abstract

Current web resources provide limited, user friendly tools to compute spectrograms for visualizing and quantifying electroencephalographic (EEG) data. This paper describes a Windows-based, open source code for creating EEG multitaper spectrograms. The compiled program is accessible to Windows users without software licensing. For Macintosh users, the program is limited to those with a MATLAB software license. The program is illustrated via EEG spectrograms that vary as a function of states of sleep and wakefulness, and opiate-induced alterations in those states. The EEGs of C57BL/6J mice were wirelessly recorded for 4 h after intraperitoneal injection of saline (vehicle control) and antinociceptive doses of morphine, buprenorphine, and fentanyl. Spectrograms showed that buprenorphine and morphine caused similar changes in EEG power at 1-3 Hz and 8-9 Hz. Spectrograms after administration of fentanyl revealed maximal average power bands at 3 Hz and 7 Hz. The spectrograms unmasked differential opiate effects on EEG frequency and power. These computer-based methods are generalizable across drug classes and can be readily modified to quantify and display a wide range of rhythmic biological signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.