Abstract

IntroductionThere is a significant relation between old-age depression and subsequent dementia in patients aged 50. This supports the hypothesis of old-age depression being a predictor, and possibly a causal factor, of subsequent dementia. The number of people aged 60 years and over has tripled since 1950, reaching 16% in 2050, leading to new medical challenges. Depression is the most common mental disorder in older adults, affecting 7% of the older population. Dementia is the second most common with about 5% prevalence worldwide, but it is the first leading cause of disease burden.ObjectivesEarly detection and treatment is essential in promoting remission, preventing relapse, and reducing emotional burden. Speech is a well established early indicator of cognitive deficits. Speech processing methods offer great potential to fully automatically screen for prototypic indicators of both dementia and depressive disorders.MethodsWe present two different methods to detect pathological speech with artificial neural networks. We use both deep architectures, as well as more traditional machine learning approaches.ResultsThe models developed using a two-stage deep architecture achieved 59% classification accuracy on the test set from DementiaBank. Our CNN system achieved the best classification accuracy of 63.6% for dementia, but reaching 70% for depressive disorders on the test set from Distress Analysis Interview Corpus.ConclusionsThese methods offer a promising classification accuracy ranging from 63% to 70%, applicable in an innovative speech-based screening system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.