Abstract

Currently, about 20 crystal structures per day are released and deposited in the Protein Data Bank. A significant fraction of these structures is produced by research groups associated with the structural genomics consortium. The biological function of many of these proteins is generally unknown or not validated by experiment. Therefore, a growing need for functional prediction of protein structures has emerged. Here we present an integrated bioinformatics method that combines sequence-based relationships and three-dimensional (3D) structural similarity of transcriptional regulators with computer prediction of their cognate DNA binding sequences. We applied this method to the AraC/XylS family of transcription factors, which is a large family of transcriptional regulators found in many bacteria controlling the expression of genes involved in diverse biological functions. Three putative new members of this family with known 3D structure but unknown function were identified for which a probable functional classification is provided. Our bioinformatics analyses suggest that they could be involved in plant cell wall degradation (Lin2118 protein from Listeria innocua, PDB code 3oou), symbiotic nitrogen fixation (protein from Chromobacterium violaceum, PDB code 3oio), and either metabolism of plant-derived biomass or nitrogen fixation (protein from Rhodopseudomonas palustris, PDB code 3mn2).

Highlights

  • Due to recent advances in high-throughput structure determination, structural genomics initiatives are proceeding fast

  • Our bioinformatics analyses suggest that they could be involved in plant cell wall degradation (Lin2118 protein from Listeria innocua, PDB code 3oou), symbiotic nitrogen fixation, and either metabolism of plant-derived biomass or nitrogen fixation

  • Detailed structural analyses and sequence comparison between these three proteins and 62 well-characterized AraC/XylS family members suggest that they could be involved in plant cell wall degradation (Lin2118 protein, PDB code: 3oou), symbiotic nitrogen fixation (PDB code: 3oio), and either metabolism of plant-derived biomass or nitrogen fixation (PDB code: 3mn2)

Read more

Summary

Introduction

Due to recent advances in high-throughput structure determination, structural genomics initiatives are proceeding fast. The Protein Structure Initiative (PSI) reports the determination of over 5,500 proteins structures in its Structural Genomics Knowledgebase as of November 2011 [1]. There is an urgent need for computational annotation methods of these structures of unknown function. We present here an integrated bioinformatics method for the functional annotation of transcription factors that combines sequence-based relationships and three-dimensional (3D) structural similarity of transcriptional regulators with computer prediction of their cognate DNA binding sequences. We applied this method to the AraC/XylS family of transcription factors

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call