Abstract

New strategies are needed to improve the results of automatic measurement of the various parts of the ECG signal and their dynamic changes. The EClysis software processes digitally-recorded ECGs from up to 12 leads at 500 Hz, using strictly defined algorithms to detect the PQRSTU points and to measure ECG intervals and amplitudes. Calculations are made on the averaged curve of each sampling period (beat group) or as means +/- SD for beat groups, after being analyzed at the individual beat level in each lead. Resulting data sets can be exported for further statistical analyses. Using QT and R-R measured on beat level, an individual correction for the R-R dependence can be performed. EClysis assigns PQRSTU points and intervals in a sensitive and highly reproducible manner, with coefficients of variation in ECG intervals corresponding to ca. 2 ms in the simulated ECG. In the normal ECG, the CVs are 2% for QRS, 0.8% for QT, and almost 6% for PQ intervals. EClysis highlights the increase in QT intervals and the decrease of T-wave amplitudes during almokalant infusion versus placebo. Using the observed linear or exponential relationships to adjust QT for R-R dependence in healthy subjects, one can eliminate this dependence almost completely by individualized correction. The EClysis system provides a precise and reproducible method to analyze ECGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call